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Motivation

Buildings are responsible for ~40% of total energy use in U.S.
(EIA, 2013)

Many cities are “urban heat islands” with higher temperatures
than surrounding areas

Global climate change is projected to warm cities

81% of people in the U.S. live in cities as of 2010 (u.S. Census Bureau)

— Worldwide rate is ~“50%




The summer afternoon
urban heat island effect
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California cities are projected to warm

over the next century

Extreme heat days by mid-century
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CO, emissions (GtC / year)

On the need for local solutions for dealing
with climate change

e Mitigating global climate change requires vast decreases in
CO, emissions worldwide (top priority!)

* Given the lack of progress thus far, cities need local
solutions to deal with local impacts of climate change
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Methods to reduce urban heat

Reverse the local climate
consequences of:

1) Dark surfaces

2) Lack of vegetation

3) Anthropogenic heating

4) Thermally massive
materials

Fabric of a typical city

Other
14%

39%

Pavements

Roofs

29%

Vegetation




Some “cool community” strategies

Cool roofs

Cool pavements

Vegetative roofs

Street level
vegetation




Solar reflectance (a.k.a. albedo)

surface

Definition: The ratio of reflected to incident sunlight



Solar reflective roofs can reduce building
energy use AND lower urban temperatures
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- ~20-25% of urban areas
are roof tops
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Cool roofs reduce energy use in most
climates

* Cool roofs can reduce cooling energy use by 10-20% or more

Roof footprint: 188 m? (2020 ft?)
Annual HVAC energy cost savings: USS167 (20%)

Rosado et al. (2014)
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Cool roofs can reduce urban temperatures
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Primary research question
Q: What is the maximum increase in roof albedo
attainable in cities?

To answer, need to characterize current stock of roofs
at city scale.



Possible data sources

Satellite

1) NASA products (free)

— Spatial resolution too low

2) Commercial satellites

— Too expensive for our large areas of
analysis

Orthoimagery (acquired via airplane)

— Not radiometrically calibrated
— Usually no near-infrared information



Possible data sources
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National Agricultural Imagery

Program (NAIP)

* Aerial imagery for all of California
* 1 meter spatial resolution
* 4 spectral bands

* red, green, blue, near-IR

e Available for free via USGS

* BUT, not radiometrically
calibrated



2009 was a special year ...

 Northwest Group used a radiometrically calibrated sensor

similar to those used on satellites

* Obtained raw sensor data and reprocessed



atial coverage of acquire

data
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Overview of our approach

Remotely sensed
radiances (all pixels)

Remotely sensed

Remotely sensed
reflectance (all pixels)

reflectance (roof pixels)

Blue Blue Blue
Correct for the
GFEEH atmosphere and GFEEFI Extract roof pixels GTEEI"I
surface anisotropy N using building Uutlinesx
Red > Red > Red e
Near-IR Near-IR Near-IR
Apply empirical model to convert
remotely sensed narrowband
reflectances to broadband solar
reflectance
Average pixels Calibrate albedo
within each roof values based on
bounda measurements
Mean albedo | _ ’ c:: :Efacined < uni\;ﬁgfaied
of each roof ( : ) ( _ )
of roof pixels of roof pixels

Source: Ban-Weiss et al. (2015a)



Example sensor data for each band

Band 1- Band 2-
Blue Green

Band 3- Band 4-
Red Near IR

19 Source: Ban-Weiss et al. (2015a)



Extracting roof pixels using building outlines

Source: Ban-Weiss et al. (2015a)
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Developing an empirical model to predict
albedo from remotely sensed reflectances

Reflectance
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Predicting albedo from remotely sensed
reflectances
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Results



Mean albedo for each rooftop

Albedo

I 0.00-0.05
B 0.06-0.10
P 0.11-0.15
[ 016-0.20
. 021-025

0.26 - 0.30
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, . 0.46-0.50
Ll .p 5 - : e s, il B 0.51-0.55
hﬂ'"' : 5 LR e i R T e 0.56 - 0.60
; ' : : 0.61-0.65
. 0.66-0.70
I 071-075
P 0.76-0.80
P 0.81-0.85
I o.86-0.90
I 0.91-0.95
I o0.96-1.00

bt *1

Source: Ban-Weiss et al. (2015b)




In Los Angeles most roofs have low albedo

b 30—
- Los Angeles
25 —
2 ]
8 20 — _-
5 - i
= 15 — =
@ -
= ]
& 10 o N=1,130,120
= p=017
53 6 =0.08
0_||| T T T[T T [T T T[T T[T [ TTT[r17
0.0 0.2 04 0.6 0.8 1.0
Predicted albedo S(b,g.r.i)
C 100 —
90 = Los Angeles
€t 80 = Total roof area = 222.4 km?
i) -
£ 70 4
g =
o 60 3
> =
5 980
Predicted Albedo =1 40 =
E =
I 0.00-005 3 30 3
0.06 - 0.10 00 =
0.11-0.15 N . = unweighted
0.16 - 0.20 . o o R 10 o area weighted
0.21-0.25 : 258 ' =
I % - s ] w II\IIIIIIIIIIIIIIIIII\II|I|\I|\II\II\IIlII\II\II\
- ——— 0.0 0.2 0.4 0.6 0.8 1.0 | Source: Ban-Weiss
Predicted albedo S(b.g.r.i) et al. (2015b)




Average roof albedo

0.00 0.05 0.10 0.15 0.20 0.25

San Francisco 0.18

San Jose 0.18
Bakersfield 0.20
Los Angeles 0.17




Assessing precision of our approach using
multiple fly-overs: high precision!
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Percent of roofs

i Los Angeles
i RMS = 0.023

30
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Source: Ban-Weiss et al. (2015b)



Most city-wide roof area is “small” roofs
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Area fraction smaller

Fraction of total roof area made up of roofs with
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Most city-wide roof area is “small” roofs

Fraction of total roof area made up of roofs with
area < roof area threshold
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Mean albedo of roofs smaller
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Small roofs have low albedo while larger roofs

have higher albedo
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Small roofs have low albedo while larger roofs
have higher albedo

Mean albedo of roofs with:

area < roof area threshold area > roof area threshold
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Small roofs have low albedo while larger roofs
have higher albedo

Mean albedo of roofs with:

area < roof area threshold area > roof area threshold
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albedomap.lbl.gov shows roof albedos
for five California cities
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Policy relevant conclusions

* Many commercial and residential buildings
in California have roofs that could be made
cooler (more reflective) to save energy

* Buildings with small roofs (primarily

homes) constitute a large fraction of city
roof area and have low albedos

36
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Policy relevant conclusions

Therefore, efforts to increase urban-scale

bedo for heat island mitigation and climate
hange adaptation should include cool roof

requirements for residential buildings where

d
d
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ppropriate (while maintaining desired
esthetics)
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Latest policy developments
for cool roofs



Los Angeles becomes the first major city to
require cool roofs on residential buildings

ASCE You are not logged in.  Login About ASCE  About Civil Engineering  Donate Now My ASCE

il Engineering

Archive lssues I MAA LS ATINE

HOME ABOUT CE MAGAZINE SUBMISSION ADVERTISE ASCE NEWS VENDOR SEARCH CAREER CONNECT

Search Online CE Magazine (2009 to present) :J Search text...

L.A. Passes “Cool Roof” Ordinance R3¢ o | w 1weet o B Share

By Catherine A. Cardno, Ph.D.

Al

In a bid to combat its urban “heat island effect,” the city of Los Angeles has
passed an ordinance that requires all new or renovated residential
structures to install solar reflective roofing.

January 21, 2014—Last month, the Los Angeles City Council added a new
ordinance to the city's 2014 municipal building code. Now all new and renovated J
residential structures—from small, single-family units to multistory apartment
towers—will be required to install so-called "cool roofs,” which reflect solar rays
rather than absorbing the sun's heat and contributing to the city's warming.

“L.A. suffers from a strong urban heat island effect of 6°F or more compared to
surrounding less developed areas,” says Craig Tranby, an environmental
supervisor in efficiency solutions at the Los Angeles Department of Water and

Power, who wrote in response to written qguestions posed by Civil Engineering o A Sl

onik: Under a new ordinance, all new and renovated residential structures,
including multifamily structures, will be required to have roofs that reflect

In Los Angeles, the heat island effect has "resulted in a number of significant solar rays rather than absorbing the sun's heat. Wikimedia

negative impacts on the environment, which the cool roofs will help address,” commons/Thomas Pintaric

Tranby said. At the community level, these negative impacts include decreasing

roof and materials life, increasing overall and peak energy consumption as consumers cool buildings with air conditioning, and increasing heat-related iliness
among those who cannot afford to cool their structures. More broadly, the heat island effect also increases greenhouse gas and smog formation in the
atmosphere, and decreases climate resiliency within the city, according to Tranby.



2013 Title 24 prescribes cool roofs for all nonres
buildings, and some res buildings

Min
aged

SR

Nonres or high-rise res, 0.63
low slope, all CZ

Nonres or high-rise res, high  0.20
slope, all CZ

Res, low slope, CZs 13 & 15 0.63
Res, high slope, CZ 10 - 15 0.20

SR = solar reflectance (fraction of incident sunlight reflected, 0 - 1)
TE = thermal emittance (efficiency emitting thermal radiation, 0 - 1)
SRI = solar reflectance index (0 = reference black, 100 = reference white)
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Current and future work



Life Cycle Assessment and Environmental
Co-benefits of Cool Pavements

Project just wrapping
up
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Determining optimal urban heat mitigation strategies
for vulnerable populations in a changing climate

Surface air temperature

below 26.08 °C

26.08 to 26.52 °C
26.52 to 26.97 °C
26.97 to 27.41 °C
27.41 to 27.85 °C
27.85 to 28.29 °C
28.29 to 28.74 °C
28.74 to0 29.18 °C
29.18 to 29.62 °C
above 29.62 °C

=2 USC University of
1Y Southern California

JIRCLCAONN

Portland State

UNIVERSITY



Upcoming LBNL-USC-Altostratus study will
measure UHI in Los Angeles Basin




Solar-reflective “cool” walls:
benefits, technologies, and implementation
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Thank you!

Predicted Albedo
I 0.00-0.05
£ 0.06-0.10
0.11-0.15
0.16 - 0.20
0.21-0.25

& S I 0.26-0.30
i I 031 - 1.00

] 3‘:]

George Ban-Weiss
banweiss@usc.edu
Assistant Professor

Astani Dept of Civil and Environmental Engineering
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Supplementary slides



City-wide mean albedos (and other stats)

Fraction of

Total Roofs with | Total roof city Mean albedo
City roofs duplicate area (standard

2 covered by . a
analyzed albedos (km”) deviation)

roofs

Los Angeles 1,130,120 ° 430,332 222.4 18 0.17+0.08
Long Beach 136,582 " 37,344 26.9 20 0.18 £0.09
Bakersfield 109,237° 53,541 30.5 10 0.20+0.11
San Francisco 82,941° 72,045 31.8 25 0.18+0.08
San Jose 297.914° 124,834 64.2 14 0.18+0.12
Sacramento 1009 ° 80 N/A N/A 024 +0.11
San Diego 1003 ° 548 N/A N/A 0.29 £0.15

48

@ Area weighted mean =+ area weighted standard deviation




Statistics for roofs with area > 5,000 m?

Provides an estimate for the fraction of commercial
buildings that obtained high albedo roofs due to Title-24
(as of 2009)

\

City Percent of Percent of Percent with
total roofs total roof area albedo >0.4

Los Angeles 0.1 7 8

Long Beach 0.2 9 14

Bakersfield 0.1 4 40

San Francisco 0.5 10 3

San Jose 0.2 10 22

49

Source: Ban-Weiss et al. (2015b)



Estimated error (accuracy) at
90% confidence interval

Albedo

Error

Los Angeles/Long Beach Sacramento San Jose San Francisco San Diego Bakersfield

v ek e e v e- v ek v ek v et
0.1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00
0.2 0.01 0.01 0.02 0.02 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00
0.3 0.01 0.02 0.03 0.03 0.00 0.00 0.02 0.02 0.00 0.00 0.01 0.01
0.4 0.02 0.02 0.04 0.05 0.01 0.01 0.03 0.03 0.01 0.01 0.02 0.02
0.5 0.03 0.03 0.06 0.07 0.02 0.02 0.04 0.04 0.02 0.02 0.03 0.03
0.6 0.04 0.05 0.07 0.08 0.02 0.03 0.05 0.05 0.03 0.03 0.04 0.04
0.7 0.05 0.06 0.09 0.10 0.03 0.04 0.06 0.07 0.04 0.04 0.05 0.05
0.8 0.06 0.07 0.10 0.12 0.04 0.05 0.07 0.08 0.05 0.05 0.06 0.06
0.9 0.08 0.08 0.12 0.14 0.06 0.06 0.09 0.10 0.06 0.07 0.07 0.08
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Source: Ban-Weiss et al. (2015b)



